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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

APPLICATION OF TCHEBICHEF FORM OF HARMONIC ANALYSIS
TO THE CALCULATION OF ZERO-LIFT WAVE DRAG
OF WING-BODY-TATT, COMBINATIONS

By George H. Holdaway and Williasm A. Mersman
SUMMARY

The techniques of the compubting procedure of NACA RM AS53HLT have been
significantly improved by a new procedure of harmonic analysis using
Tchebichef polynomials. This lmproved method is described in debtail with
illustrations of 1ts two main adventages; these are, simplification of
the computing procedures, and the provision for a comprehensive check
solution which includes a direct check of how well the number of harmonics
used represent the area-distribution curve. For the present, no specific
recommendation can be made as to the number of hermonics which should be
used for all configurations in making wave-drag computatlions; however,
certain guides are given in the concluding remarks of the report. The
new procedure is also evalusted by comparisons with amalytical solutions,
results from the previous method, and experimental results.

INTRODUCTION .

The computing method of reference 1 has been effectively used to
estimate the zero-lift drag-rise coefficlents of various relatively smooth
wing-body-tall combinations (refs. 2, 3, and 4). However this original
method involvee several operations, and the checking procedures, such as
were used in reference 3, are time-consuming and check back to only the
slopes of the area-distribution curves and not to the area-distribution
curves themselves.

It 1s the purpose of thils paper to present and to analyze another
method for representing the slope of ares~distribution curves, which will
allow for a more rapid computation of wave drag and will permit the use
of an Improved method of checkling the computetions. The basic method for
computing the wave drag is fundamentally the same as in reference 1 and
is based on the theory of reference 5. The main difference is that
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Tchebichef polynomisls (refs. 6 and 7, also spelled Chebyshev) are used
to represent the Fourier sine serles defining the slopes of the area~
distribution curves.

The new method 1s evaluated by comparison of results with analytical
solutions, results from the previous method, and experimental results for
Mach numbers up to 1.8. The configurations Selected, for which experl-
mentel date were available, included models of a triangular-wing
interceptor-type airplane, & swept-wing interceptor-type airplane, and a
body-tall configuration with a scoop-inlet duct. '

-zero=lift drag coeffilcient,

SYMBOLS - o

coefficients defining the magnitude of the harmonics of a
Fourier sine series o ’
drag at zero 1ift
oSy

theoretical wave drag
at zero 1ift

W5y

zero=1ift drag rise above
subsonic level

@Sy

loceal chord measured parallel to plane of symmetry

zero-lift wave-drag coefflcient,

zero=1l1ft drag-rise coefficient,

mean aerodynamic chord of the total wing
maximum body dilemeter
fuselage or body length
free~gtream Mach number
duct mass=-flow rstio
number of terms or harmonics used in the Fouriler sine series

& harmonic of the Fourier sine seriles

free~stream dynamic pressure ' - r~

projection of Sg on a plane perpendlculsr to x axis
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Sg area formed by cubtting configurations wilth planes perpendicular
or oblique to the x axis

8t (x) slope of S curves as & function of x, %i—

Sw total wing area

X distance along the x axis measured from the mid-length
position

X,V 52 Certeslan coordinstes as conventiomal body axes

2] sngle between the z eaxls and the Intersection of the cutting

planes X with the yz plane
(See ref. 1 for descriptive sketches and detailed definitioms.)

3 distance slong the x axis measured from the mid-length position
divided by one half of the body length

o transformation of the length x +to radians, arc cos Z o
arc cos § L

X & serles of parallel cuttlng plenes tangent to the Mach cone

(At M =1.0 these planes are perpendicular o the x axis.)

¥ angle In the xy plane forward between the ¥y axis intercept
of the cutting planes X on the xy plane,

arc tan (WM2-1 cos @)

Tnh(&) = cos ng Tchebichef polynomisl, reference 6
>
Vo(E) = %%‘éﬁ = Up~1(g) Tchebichef polynomial, reference 6

COMPUTIRG METHOD

A summary of the computing method is presented here, with the complete
details given in the appendix. As shown in reference 1 (based on the
theory of ref. 5) » the wave~drag equation may be written in coefficient
form as

1 S 2
Cp! = f Z nA “do 1
Do B85y ; n (1)
n=1
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where A, is considered as having a length dimension and is defined as

k1
An = 5 f S1(x) sin np dop (2)
(o]

Introduce the variable, £ =‘%¥ = cog8 @; then eguation (2) may be written,
1

mog [ s Z22a (3)

i 8in
-l q)

where the limits are defined in figure 1:

~lcx

g

®
Introduce the Tchebichef polynomial, reference 6:

Vo(E) = sin 09

sin @ : ' _
Then equation (3) for the coefficients of the Fourier sine series may be
writiten such that the integrand is a function of one variable:

IA
e

-1

IA
IA

£14

v
tv
o

1
An =s%-f s'(&)vn(g)de, n=1,2,3, . .. (%)
-1

Becauge of this simplification the computation of these coefficlents and
N .

the summetion ZE: nAn2 can be performed by one continuous operation on
n=1

e dlgitel computing machine. Likewise, g reverse check computation can

be performed by one machine operation. The wave~drag coefflcients are

computed from equation (1) by a simple integration as was done in

reference 1. -

There are definite advantages which are characteristic of the new
computing method. It eliminstes the intermediate steps of the previous
method (ref. 1) consisting of computing the slopes 8S'(x), plotting S!(x)
as a function of ¢, and then reading this slope curve. The new method
works directly from the area-~distribution curves of the model. An addi-
tionel machine operstion has been programmed (see the appendix) which
permits a check computation from the Apn coefficients back to the area
curve, This is an all-inclusive check which may also be used to evaluate

CONFIOHMITIE™
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the adequacy of the selected number of harmonics used in representing a
particular curve. Supervision of the computation is cut to a minimum by
the previously mentioned improvements.

The machine time required to make computations by the new method is
one-half that of the previous method (ref. 1). This comparison does not
include the time lost using the previous method due to data handling
between steps. The time required to determine the area distribution of
the models is not comsidered in this report and would not vary between
the wave-drag computation methods. To campute the Fourier sine sexries
solutions (25 harmonics) from punched date cards representing one area
curve, using a Magnetic Drum Calculator, only 5 minutes are required.

The check solution requires about 10 minutes. Thus on the assumption that
five area curves are required per Mach number computation, the machine
time required for the Fourier solution using the improved method would be
less than 1/2 hour; and the checking time, less than 1 hour.

A complete derivation of the new computing method and the checking
procedure are given in the appendix which contains:

1. Transformstion to Tchebichef form for computing Fourlexr coeffi-
clents

2. G@General Iintegratlon procedure

3. Tchebichef integrétion coefficients
(a) ILinear approximation
(b) Quadratic approximation

Y. Checking procedure

5. Construction and checking of tables (available on punched data
cards upon request)

6. Theory and Properties of Tchebichef Polynomials
RESULTS AND DISCUSSION

An evaluation of the new computing method will be discussed in three
parts: known anelyticel solutions compared with computed velues of the
Fourier coefficients; previous solutions from reference 3 compared with

_ N
new computed velues of the drag parameter ZE: nAn?; and availasble experi-

n=1
mental values of drag-rise coefficlents compared with computed values of
wave-drag coefficlents at zero 1lift.

GUNFEDERT LD
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Check of Method by Analytlcal Solutions

The first known sclution considered will be that for a Sears-Hasack
body. The shape of this minimum-drag body for prescribed volume and length
is defined in figure 2. The fineness ratio of 12.5 and the actual dimen=-
slons were arbiltrarily selected. The theoretical equation for the zero=
1ift wave~drag coefficlent (Cp_ ', flg. 2) 1s seen to be independent of
Mach pumber (for slender bodieS or for Mach numbers near 1.0). Also note
that the derivative of the area curve is exactly equal to Apsin 2¢ where
Ay defines the magnitude of the sin 29 curve. The coefficient A, 1s
the only nonzero term; therefore equation (1) simplifies to

Cp,' = Egt A" . (5)

where, in this case, the reference ares (SW) is replaced by the body maxi-
mum cross—-sectlonal area for a body-alone test; that is,

v 229 ed) (6)

and
}: nAp? = 24,2 =-% nZG%E)ZdOZ - 206.521 sq in.
n=1L

For the dimensions selected, dy = 53.9198 inches.

For comparison with this theoretical solution, the area curve in
figure 2 was analyzed by the new method using Tcheblchef polynomials.
The areas were campubted for 200 equal increments of x, data cards were
punched, and the A, values were computed for 25 harmonles with the
results as shown in table I. Even for the linear approximation (see
appendix) between data points of S(&), the value of 28,2 equal to 206.502
is in excellent agreement with the theoretical value of 206.521, and the

25
total summation 2; nAn? equal to 206.731 shows an error only on the order
n=1

of 1/10 of 1 percent. For all harmonics other than the second the coef-
flclente should be Zero. The areag from the check solution agreed well
with the original wvalues for this case, with errors less than the possible
errors in the original data (0.05 percent of 8B(£) maximum). For a body
that is closed at both ends the firet coefficient of the Fourier sine
serles 1s always equal to zero, as in the solution presented in table I.
For & body which does not close at the erds, the first term 14,2 represents
the function of wave drag for a von Kérmén ogive on an infinite cylinder.

GOy
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The cylinder cross-sectlional area 18 equal to the base area of the body
or is equal to the base area minus inlet area in the case of & ducted
nodel.,

The second known solutlion considered will be that for a simplified
area curve with a discontinuity of slope. This curve was selected in
order to check the over=-all computing procedure for all values of n from
1 to 25, because the previous Searg-Haack case primarily checked the compu-
tation of the second harmonic. The area curve is shown by the small insert
in figure 3(a) and is defined:

S(t) = 0 for ~0.6 < £ < 1.0
and
S(e) = -(& + 0.6) for -L.0 < & < 0.6
The coefficlents A, were computed by hand from the relationship
ll- =0 «&5
bn ==~ 77 Tn]
=1.0

These hand-computed values of Ap are compared with machine computations
based on the area curve read at 200 equal intervals (table II). Note that
the machine solutions agreed very well with the hand computed values
(within five decimsl places). These machine-computed values of Ap

were used to compute the check golutions shown for both the area curve
(fig. 3(a)) and the derivative of the area curve (fig. 3(b)). The ares
curve is enlarged in the region of the discontinuity of interest (¢ = =0.6)
in order to show the check solution differences (fig. 3(a)). At this dis-
continuity the maximum error is 2.3 percent of S(§) maximum, otherwise
the error is less than 1 percent. This type of check solution glves an
obvious geometric plcture of the accuracy of the computation for the number
of harmonics used relative to the accuracy with which the original aresa
curve is computed.

Al though not required by the new couwpubing method, the derlvative of
the entire area curve is shown as the solid line in figure 3(b). This
slope curve is plotted agalnst ¢ in the manner used in the previous
method of computing wave drag (ref. 1). The circular check points were
computed by the method of reference 3, but the same values of Ap (based
on Tcheblchef polynomials, fig. 3(&)) were used. The overshoot of the
check polnts near the discontinuities is due to the Glbbs phenomenon
(ref. 8) and is not truly an indication of the accuracy of the Fourier
coefficients, An. The interpretation of this type of check solution, rela=-
tive to errors in srea, 18 not obvious and is certainly more difficult
than the check of figure 3(a). This difficulty was also apparent for some
of the check ceses presented in reference 3.
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Check of Method by Prior Solutlons

Although more involved, the previous computing method has been fairly
successful in evaluating wave drag; therefore, a direct comparison between

N
the two methods of the solutions of the drag parameter }: nAﬂ? was made.
n=2%
From reference 3, two area curves were selected which had similar
4
total summations nAy®, one curve having a discontinuity in slope of
n=x1 N

the area curve (figs. 4(a) and 4(b)). The drag parameters ;z nA,Z

n=1
computed by the two methods are compared in table III. The agreement
indicates that the Tcheblchef solutions are compareble within 2 0 3 per-
cent even for & curve with a discontinuity of slope. Due to the reduced
number of operations involved, the new method has less chance for error.

The check solutions, of these two ares curves shown in figure &4,
were computed by the new method, using the Tchebichef values of Ay
(table III). As was noted in reference 3, the check solutions indicate
a feirly satisfactory fit of the area curve in the case of figure 4(a),
and an incomplete solution for N = 25 in the case of figure 4(b). How-
ever, in contrast with the check solutions of reference 3, these check
solutions directly show the errors in aresa.

Check of Method by Experimental Results

Aveilable geometric and experimental data for three models were
utilized to check the new method: a triangular-wing interceptor-type
airplane model, a swept-wing interceptor-type model, and a free-flight
model having tall surfaces but no wing (thls model was also considered
with a large scoop~inlet and duct system).

Trisngular-wing interceptor-type airplane model - Model 1.~ The
dimensions and pertinent geometric data of the model are presented in
figure 5 (data from ref. 9). The experimental data, also from reference G,
are shown in figure 6 with the computed results and model cross-sectional
area distribution. The experimental drag coefficients are identified as
minimm~drag coefficlents, because the 1ift varied from approximately
zero lift at low subsonic and high supersonic speeds to a peak wvalue of
Cr, = 0.05 at M = 0.97. The friction-drag coefficients were approximated
by the method used in reference 10. The empirical correction factor of
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1.15 suggested (ref. 10) for the body portion was not applied since good
agreement was obtained with the subsonic drag coefficlents without such
¢orrection.

The agreement between the experimental and theoretlcal total-drag-
coefficient curves (fig. 6) is considered to be good, with errors less
than 10 percent’of the experimental minimum~drasg coefficlents. The error
in percentage of the weve~drag-coefficient increment, assuming the
friction-drag variation is correct, would be increased to almost 16 per-
cent. An assumption of no variation in friction-drag coefficlent with
Mach number would indilcate essentially no error at all supersonic speeds.
As was discussed in reference 3, the theory does not apply when the leading
edge of a wing with a rounded leading edge becomes sonic. For thls con-
figuration the leading edges of the horizontal stabilizers are supersonic
for Mach numbers greater than spproximately 1.4 and the wing leading edge
is supersonlc for Mach numbers greater than spproximstely 1.6. Inasmuch
ag the wing is thin and the horizontal tail is a small part of the total
configuration, the computations at M = 1.8 are considered to be a fair
approximation in spite of the violation of the assumptions of the basic
theory. The leading edge of the vertical surface of the taill is not sonic
until M = 2.0. .

As & secondary eveluation of the computetions for this triangular-
wing model, area curves with check solutions (N = 25) are presented in
figure 7 for Mach numbers of 1.0, 1.2, end 1.8. These curves illustrate
the degree of error in the area curves which are apparently tolerable,
in view of the good computed drag~coefficlent results shown in figure 6,
This suggests that the grea curves are effectively smoothed by boundary-
layer or separation effects. For the M = 1.0 curve (fig. 7(2)), computing
additional terms of the series would probably improve the agreement between
the check curve and the originsl curve, but would increase the disagreement
with the drag-rise coefficients at M = 1.0. The check solutions for the
M = 1.2 curves (figs. T(b), T(c), and T(d)) are considered to be satis-
factory because only slight radil changes to the original body would be
required to gilve areas which would match the check curve. Experimental
results have indicated that small changes In area of this order or less
would have little effect on the wave drag. The check solutions for the
M = 1.8 curves (figs. T(e) and T(g)) are considered on the basis of the
area curves slone to be guestionable, particularly for the 270° cut

(fig. T(g)).

In this case, for the M = 1.8 computations, additional harmonics
over the 25 used are evidently requlred to ilmprove the agreement between
the area curves. Increasing the harmonics to 49 gave agreement between
the ares curves and the check solutions (generally within the width of
the line), with the maximm error (270° cut) being less than 2-1/2 percent
of the local ares curve values. The computed wave-drag coefficients for
N = 49 were 8 percent greater than the experimental drag-rise coefficients
et M =1.8 (fig. 6). Increasing the number of harmonics above 49 would

NI TR
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further improve the agreement with the area curve, but would Increase the
disagreement with the experimental drag results., This tends to support
the previously mentioned fact that at M = 1.8, the supersonic leading
edges of the blunt alrfoil sections are in violation of the theoretical
limitations of smoothness or slenderness.

Swept-wing interceptor-type airplane model - Model 2.~ The dimensions
end pertinent geometric data of this model are presented in figure 8. The
dimensions shown were taken from layout drawings furnished by the manu-
facturer for this particular version. The layout drawings alsoc contained
details as to fillets, etc.; from which comprehensive area distributions
were computed. Flight-test results were obtained from reference 11 for
s model of a similar low-tall version of the eirplene. The areas distri-
butions for Model 2 and the model of reference 11 are compared in figure 9.
The essential difference between the models is that the low-tall version
of reference 11 had thinner tail surfaces. In addition the fuselsge lines
on the model of reference 11 were faired to a point ahead of the proposed
nose~inlet location and the model had no duct.

The two area curves shown in figure 9 were analyzed by the new com-
puting method (N = 25) which gave wave-drag coefficients for M = 1.0.
The computed results are coumpared in Tigure 10 with experimental drag-rise _
coefficients from reference 11. The only exact comparison which can be
made i1s for the experiment and computation for the model of reference 1l
for M = 1,0, The perfect agreement is fortuitous, particularly at a
Mach number of 1.0, but still this is a favorable indication for the new
computing method. The difference between the computed results for the
two models (M =1.0) is only slightly over 10 percent, based on the experi-
mental results,

The computations at the two higher Mach numbers had to be made for
the airplane for which detailed area distributions were available; there-
fore, a direct comparison between the theory and the experiment cannot
be made. However, the differences at these higher Mach numbers should
be of the order of the differences at M = 1.0 (or less) thus reasonable
agreement 1s indicated. No correction for friction drag was mwade in this
case; however, the prior example showed that the variation in friction-
drag coefficient with Mach number would be slight. Couputations were not
attempted above M = 1.4t because sonic leading edges of the Ffairly thick
wings with rounded leading edges would produce abrupt changes in area
distribution which definitely exceed the theoretical limitations, For
this type of wing the 25~term solution does not closely fit the original
area curve in the region of the discontinuity, as shown in reference 3
and figure 4(b).

Scoop=inlet-duct model - Model 3.~ The results of the experimental
investigation of this model heve not been published; however, the test
procedures were identical with those of reference 12, Detalls of the
models and a brief discussion of the experimental data accuracy are
included, so that comparisons with wave-drag coefficients computed by the
new method way be correctly evaluated. The ‘dimensions of the basic body

g
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and the ducted version are given in figure 11 and tables IV and V. The
tests of the scoop-duct version were made at duct mass-flow ratios of
approximately 0.6 and 0.9 using two duct nozzles with different throat
gizes. The accuracy of the instrumentation and the accuracy of the final
data were similar to the values of reference 12. For the scoop model,
particularly for the test with a mass-flow ratio of 0.6, the errors at
subsonic speeds were increased, due to fluctustion of duct pressures, to
a possible maximum error in drag coefficients of +£0.02.

The experimental results for Model 3 are presented in figure 12.
The internal drag coefficients (computed by -the method used in ref. 12)
were subtracted from the total drag coefficients at each data point to
obtain the externsl drag coefficients. External drag-rise coefficients
were measured relative to the experimental data at a Mach number of 0.8
(fig. 12(b)). The small differences between the experimental dreg-rise
coefficients at the two different mass~-flow ratios are probably not sig-
nificant in view of the possible errors in these data at subsonic speeds.
The externsl drag-rise coefflcients of the basic model are of course more
accurate than for the ducted models, because the basic data were more
accurate and no correction for internsl drag was required.

Computed wave-drag coefficients are also shown in figure 12(b). The
computation for the basic model was straightforward, checks were satis-
factory, and the agreement with experimentation can be consildered as
another check of the new method of computation (differences x 10 percent
or less). In the computations for a mass-flow ratio of 1.0 it was assumed
that a streawmtube equal to the duct-inlet area passed through the duct
relatively undisturbed without contributing to the external drag coeffi=~
cients (fig. 13). The duct~inlet area was removed as a constant value
from fuselage station 8L.5 (duct inlet)to station 134 (duct exit). The
area difference between the duct inlet and the exit was added as a constant
value to the ordinates of the portion of the model aft of the duct exit,
on the assumption that the increased diameter of the streamtube 1s main-
tained and affects somewhat the external wave drag. Another simplified
procedure for determining the equivalent area distribution was tried which,
in this case, gave essentlaelly the same results. The area removed was
determined by taking a straight-line variation from the inlet area to the
exit area. As in the prior method, this procedure removed the steps (at
the inlet and exit) in the original area curve.

The computed wave-drag coefficients for (m,/my) = 1.0 were compared
with experimental drag-rise coefficients for (m;/my) = 0.9, inasmuch as
the experimental variation of external drag-rise coefficients with mwass=-
flow ratio is slight at transonic speeds (e.g., see data of ref, 13, con-
verted to drag-rise coefficients). Agreement between experimental and
computed values is good with maximum differences of the order of 6 percent
of the experimental values. This example is not considered as a firm
indication of the accuracy of the computing method because the experimental
date could be in error by 10 percent. Within the evident accuracy of the

i)
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theory and experiment, the check solution for N = 25 (fig. 13) indicates
an adequate representation of the ares curve. Addltional terms would be
required for an exact Tit.

The camputations for a mess=flow ratio of 0.6 used the latter
described procedure for removing area. Removing an area varying linesrly
from 0.6 of the inlet area to 0.6 of the exit ares left sizable steps in
the area curve (solld line, fig. 14)., These large steps in the area curve
repult in infinite slopes and a configuration which is outslde the Intended
limits of the theory. Some arbitrary feirings could be inserted st the
duct inlet based upon estlmated location of the shock wave shead of the
duct, but even thls fairing would be rather abrupt and would not remove
the discontinuity at the exit. Additlonal theory and experimentation are
required to know how to correctly handle this type of discontinuilty. In
splte of these limitations, a 25~term computation was made to clarify the
difflculties and to 1llustrate why the computation is an inadmissible one,
The computed wave~drag coefflcients for a mass=flow ratio of 0.6 predict
8 large increase in drag-rise coefficlent with a decrease in mass-flow
ratio from 1.0 to 0.6, However, as in reference 13, the experiments indi-
cate little variation in drag~rise coefficlent with mess-flow retio.

The check solutions for N = 10 and N = 25 (fig. 14(a)) indicate that
the 25=-term solution is not adequate to fit the curve and at least double
the number of terms would be required to even approach a close fit.
Increasing the number of terms above 25 would of course increase the dis-
agreement with measured drag coefficients, and this case is clesrly an
inadmigsible computation.l At present it is recommended, for ducted con-
figurations, to make the computations of wave drag only for & mass~flow
retio of 1,0, and estimate the poseible variations with mass~flow ratio
from experimental results.

CONCLUDING REMARKS

The use of Tchebichef polynomials simplifies the computation of zero-
1lift wave drag and provides a direct check of how well the numbexr of
harmonics used represents the asrea=distribution curve. For relatively
smooth dilstributions of srea, about 25 harmonics are usually sufficlent
to represent the ares curve and to compute wave drag in reasonable agree-
ment wilth experimental data,

Even for complek alrplane configurstions with slight discontinulties
in slope of the area distribution, 25 harmonics gave reasonable agreement

1Tt was of interest to note that a very srbitrary selection of
18 terms gave drag results in agreement with the experimental data, but
the check solution for 18 terms (fig, 14(b)) resulted in an extreme fair-
ing of the ares curve,
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with the measured drag rise although the calculated values were for &
smoothed ares distribution. This suggested that small discontinulties
might actually be smoothed by boundary-layer or separation effects,

On the other hand, for configurations with large discontinulties in
slope (e.g., produced by a duct with a mass-flow raetio other than 1.0),
the computed "smoothed" ares distribution and wave drag varied markedly
wilth the number of harmonics., This is to be expected because if an infi-
nite number of harmonics were used, an Infinite drag would be predicted
when there ig a step in the area curve,

In contrast a smooth body may require very few harmonics (as low as
1 or 2) to give an exact fit of the area curve and an accurate wave-drag
prediction,

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics
Moffett Field, Calif., Oct. 28, 1955
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APPENDIX A

TCHEBICHEF FORM OF HARMONIC ANALYSIS
Transformation to Tcheblchef Form for

Computing Fourler Coefficlents

In reference 5 the streamwise variation of cross-sectlonal area
S(x) is expanded in a Fouriler sine series in o:

o]

das L 1
§§;==§: Apsin no, Iy (A1)
n=1

where the Glavert angle, ¢, is given by
X
o = 0 14 A2
cos @ 375 s <L ( )

The bagic problem then is to devise a practical procedure for compubing
the Pourler coefficients, An. To begin, they are given by the classlcal
formula of harmonic analyses: -

3
2 as
Ay = =~ sin A
n ';LZ: 3 °oin ne do (A3)
To transform.to the Tchebichef form, introducé the dimensionless coordi=
nate, £: '

§=_2?/£2‘ = cos @, -l<E<l (ak)

Introducing the Tchebichef polynomials, reference 6,

T (&) = cos ng
in o n=0,1,2, . . . (A5)
Vn(8) = 'gg_-ﬁ-;;g = Un.a(€)
one may write equation (A3) as
1 o e i} :
0 _%. L aﬁgvn(g)dg, n=1,2,3, . . . (46)

O
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(A sumary of the theory end properties of the Tchebichef polynomisls is
given at the end of this appendix.) Due to the fact that
Va(=-8) = (~-1)2 1Vﬁ(§), equation (AkO), equation (A6) can be simplified to

_ 2k * d n
b g [ vale) g [s00) + (custe Jue (a)
(o]

il

Since Vi(&) = 1, from the definition, equation (A5), the first coeffi=
clent, A;, can be computed immediately:

Ay = i [S(l) - s(-l)] (A8)

Henceforth Aﬁ wlll be considered only for the positive Integral wvalues
of n=2, 3, 4, . . ..

In the next section general numerical integration formulas will be
developed, and in the following section they will be applied to
equation (AT)

General Integration Procedure

The general problem of the numerical evaluation of integrals of the
type

b
f £(8)a(t)at

a

has been discussed by Sheldon in reference 14, and the particular case

in which g(t) is a trigonometric function has been treated by Filon in
reference 15. Here the problem is generalized to include any derivative
of #£(&) rather than just the function itself. The so~-called “strip
method" is used, in which the range of integration 1s broken into XN
strips of equal length, and (&) is approximated in each strip by a poly-
nonisl. Thus

8k+3
£(g)g(t)ag = £(8)g(E)ae (A9)
[ ¥

k=0 2k

vhere &g =&, 83, 82, « » .y Byuyy 8y = b are the boundary points of
the N strips. The integral over each strip is evaluated by approximating
£(&) by a polynomiel of degree m and subdividing the strip into m

L IR
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intervaels of length A, this interval length being constant throughout
the entire range (a, b) Thus, the lattice polnts within the kth strip
are ap, ax +4, . . ., 8 + WA = ax,,. Slnce the case of most interest
is that in which (&) represents experimental date, it is assumed that
£(t) is not known continuously but only at these lattice points. Hence
it is desired to obtain an integration formula involving only these
points;

8k+2, Z ' o
f e)a(8)ag =) olm,3, ) (ag + 20) (410)
N 4 )

where the coefficlents a(m,j,k) are to be determined as functions of
g(t). Substituting equation (A:LO) in (A9) gives

f £(£)e(e)at - Z Z oy )2 + 3 (a11)

8 k=0 j=o0

If all the lattice points are numbered consecutively over the entire
range, a = £, §;, £y ¢ - ., Em = P> then S

Eimij = 8 + B

and rearrangement of equation (All) gives

b Nm . _
f £(8)e(8)at Z w(m,) £( ) (a12)
& =0 . .

where the p's are just the a's sultably renumbered, except that the
u  corresponding to each strip boundary point contains two a's, one
being the last o« for the left-hand strlp and the other being the first
a for the right-hand strip, thus:

p(m,0) = om,0,0) A
wim,km) = a(m,0,k) + a{m,m,k-1)
k=1,2,3, . . ., N<1
; (A13)
plm,km + j) = ofm,j,k), k=0,1, . . ., N-1
3=1,2, . . ., m=l
p(m,Mm) = o{m,m,N-1) J

K cacziien g
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Thus equetion (Al2) is the desired integration formula, the coefficients

i  being glven by equation (Al3), while the coefficlents o are implicitly .
defined by equation (Al0). It remains to determine them explicitly. This
is done by requiring that equation (A10) be exact whenever f(E) is a
polynomisl of degree m. (It must be remembered that all numerical inte-
gration formulas are-approximations when the integrands are arbitrary.)

This is equivalent to requiring that equation (AlO) be exact for any set

of m + 1 linearly independent polynomisls of degree m. The most conven-
ient cholce is the set of Lagranglan interpolation polynomials L(m,J,k;E)
defined by (ref. 16):

0 1f T #
L(m,j,k;ax + rA) = (a1k)
1 if » =]
An explicit representation is
. m £ - (ax + 14)
L(m)aik: g) - i=o ak + ,jA - (ak + iA)
143 .
~-1)2d
= _ Al
a2 (8 - g.4) (a15)
i3

Substituting L(m,j,k;t) for £(&) in equation (AlO) glves, by virtue of
equation (AlL) the explicit formula for the o

k.
almn, 3,6 = [ ™ om0k 0)a(E)as (AL6)
ap .

More generally, 1f it is deslred to evaluate an integral iInvolving
not f£(&) but any one of its derilvatives,

b
f a2(8) o(gyae
A .

ast

then formulas (AlO) through (Al6) remsin valild, except that in (Al6) L
must be replaced by the corresponding derivative

& L(m, §,k; £)
aex

while £ 18 replaced by the derivatlive in the integrands but not in the
sums .

ANDENTINY>
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Clearly the effectiveness of thls entlre procedure hinges upon the
difficulty of calculating the « from equation (Al6). To estimate this
difficulty it is worthwhile exhibiting some of the L's explicitly; the
gecond form of equation (AL5) glves, for m =1, 2, 3, respectively:

L(l,O,k; §) - % (5 -_§k+l)

(A17)
L(1,1,k58) = % (& - &)
L(2,0,k38) = 5xm (& = £, )08 = £,
L(2,1,k38) = = 55 (& = Ear) (6 = Boksa) (418)
1(2,2,38) = gm (& = B (& = ey
L(3,0,58) = Zg (& = baya) (8 = Egieya) (8 = Egiyg) )
L(3,1,k58) = 55 (& = Egp) (& = Eger o) (8 = Eggeyo)
VX sk sk+2 sk+8 (19)

L(3,2,k38) = S5 (& = bac) (6 = Earsn) (& = Ealcro)

o

L(3,3,5:8) = =g (& = Eaie) (& = Earya) (& - Egieya)

It 1s a straightforward, though tedious, task to extend such a table
to as high a degree, m, as is desired. The calculation of the integral
in equation (Al6) then depends on the neture of the function g(&). This
calculation can be performed anelytically whenever g(£&) 1s a polynomial,
trigonometric, hyperbolic, expomentilal, or logarithmic function. For
more complicated functions, g(g), it may be necessary to resort to numeril-
cal integration at this stage, which almost defeats the purpose of the
entire procedure! However, these integrations (eq. (Al6)) are performed
only once, and then equations (Al2) and (A13) are applicable to arbitrary
functions F£(&). In the next section, then, these results will be applied
to the integrals of equation (AT).
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Tchebichef Integration Coefficients

Writing equation (A7) in the form of the preceding section,

b [ asn(e)
Apn = — =37 v(g)dE (420)
%L ._[ ag =
with
sn(t) = s(g) + (-1)%(-¢) (a21)
the desired result is, analogous to equation (Al2),
M
Ap = 'sz bnrSn( &x) (a22)
r=0

where M = mN, the subscript m has been dropped for brevity, while the
subscript =n has been added for clarity. The p's are still given by
equations (A13), but (AL6) now becomes

&

a(m, ,k) =f i

ak

* Y, (8) .‘3_1'_(33%:52.5_)_ g (a23)

These will now be integrated explicity for the linear (m = 1) and quad~
ratic (m = 2) cases.

Linear approximstion.- In the linear case each strip consists of a
single interval of width A, m =1, ax = g = kA, M = N, NA = 1, and the
derivatives of the lagranglan interpolation polynomials are, from
equation (ALT)

dr(1,0,k; &) _ -1 an(L,l,k;E) 1
ag F N ag S A

Substitution in equation (A23) gives, for j = 0,L, respectively,

Ex )
o(1,0,k) = 5= f . Vn(g)ag
&
. ) (a2k)
1 3
of1,1,%) = & f Ta(e)at
5}: J
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aTy
Now, by equation (A4k4), V, = 54———, and therefore equation (A24) can be

Integrated directly to glve nodg

-

«(1,0,k) = ]' [Tn(ﬁk) - Tn(§k+1)

a(l,l,k) =Iﬁ‘§ [Tn(§k+1) - Tn( §k)1

=l

Substituting these in equation (Al3) and changlng the notation to agree

with equation (A22) gives
. -[T (0) - T (A):l
o =75x | Tn n

Hnr = JLIT—A'[-Tn(gr-l) + ETn(gr) - Tn(§r+1)], r=l,2, .« e -,N-l

=

= oz [Ta(2) = T - 20 |

$ (A25)

)

In the linear case, then, the complete solution 1s given by equa~

tions (A21), (A22), and (A25).

Quadretic approximation.~ In the quadratic case, each strip consists
of two intervals, each of width A, m =2, M = 2N, g, = £, = 2kA, 2NA = 1,

and the derivatives of the Lagrangisn ihterpolation polynomials sre, from

equation (A18),

dL(2,0,k;8) ~ 2¢ - (kk + 3)A

ag - 22
an(2,1,k; ¢) _ (4k + 2)A -~ 28
ag A2
dL(2,2,k;8) _ 28 = (M +1)a
ag 202
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Substitution in equation (A23) gives, for J = 0,1,2, respectively,

Sekiz g - (I '

«(2,0,k) = 28 - V¥ 38 v, (8)at
[ et

Eok -

a(2,1,k) = f e e x 20 - 26 v (n)ag ) (126)
fox

Eak -

«(2,2,k) =f T 2(2]2: -t n(£)at
B2k J

Now, from equation (Ak2),
2§Vn(§) = vn+:_(§) + Vn-l(ﬁ)

and, as before, Vn = %%};E If these relations are substituted in equa-

tion (A26), the integrations can be performed immediately to give

«(2,0,k) = a—ig [W(n +1,k) +W(r = 1,k) - (4 + 3)‘W(.-;-,1:)A:].1

a(2,1,k) = Elz- [(hk + 2)W(n,k)A = W(n + 1,k) - W(n - 1,1:)]

N

a(2,2,k) = 2% [W(n +1,k) + W(n - 1,k) - (4 + l)W(n,k)A]J

where (A27)

W(n,k) = Tn(§2k+2)n' Tp( E2k) (A28)

For this case equation (A13) becomes, in the notation of equation (A22):
Mp,o = f:-( «(2,0,0) )

bnor = %, «(2,0,%) + % a(2,2,7 - 1) $ (125,

[.l.n’zr.l.l = -)’-—[; G(E,l,r), r=0,1, . . .,N"l

Hn,oN = % "—"(2:2:N - 1) )

In the quadratic case, then, the complete solution is given by
equations (A21), (A22), and (A2T) to (A29).
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It 18 clear from equations (Al5) and (A23) that in order to use
higher degree approximating polynomials, it is necessary to evaluate inte-

grals of the type
£ m+1)
f ®42) v (ar

Exm

for successive values of J=0,1,2, . . ., m =~ 1. While no explicit
formulas will be glven, the section "Theory and Propertlies of Tchebichef
Polynomials" does include some recurrence relations which can be used iIn
an obvious way to perform such Integrations systematically for successive
values of Jj. In every case the results, o and p, involve only the one
kind of Tchebichef polynomials Tn(E), Tpei(E), ete.

Numericel tables of the integration coefficienmts pp,. have been
constructed, by the procedures discussed below, for the linear and quad-

ratic cases.

Checking Procedure

In any lengthy numerical calculation it is desirable to have a check=-
ing procedure, even if it merely comnsists of repeating the calculation.
In the present case it is possible to do much better than this. Once the
Fourler coefficlents, An, have been calculated, they can be used in a
reverse semse to calculate the area distribution, S(&), which can be com~
pared with the original data as & check. Thls is a quite effective check,
since it detects any of the following: errors in the theory itself, errors
in the tables of integration coefficlents, errors in readlng graphical
dats, errors due to using too few terms of the Fourler series (eq. (Ae)),
rounduoff errors, and errors made by the computing machine or humen opera-
tor. Clearly, such an independent checking procedure is preferable to a
mere repetition of the direct calculation, which would only detect machine
or operator errors.

Such & check is easily derived from equation (A2). Transforming to
the veriable ¢ by means of equations (AL) and (A5) gives

&ﬁg - -;-Z AnVn(EW1-£2 (430)
n=1 | ’ b

From equation (A45),

vn(g)./l_gz =Ed,-__ _é_,/l_gz l:Vn+1(§) _ Vn-l(g)J , n=2,3, . .

de n+1 n=-1

R o S
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while, since V, (&) =1,

Vi(EWL-E2 = a——( EN1=t2 + = arc sin §>

Substituting these in equation (A30) gives

1 n-21

~

%—s— = -Z‘: (%—{(_E,\[l_-? + arc sin §>A:L +Z NI-g2 l:vn+1(§) Ya-a(£) J
=2

(A31)
and S(&) can be obtained immediately.

S(6) = C + £ (W +are otn £ +.};J’l':g§i W) Taea(0)]
n==22

n+ 1 n -1
(A32)

where C 18 a constant of Integration. Set‘f:ing E =1 gives

s(1) = ¢ +£87'-Al

Eliminating C in equation (A32) gilves

S(g) = s(1) +—<§~/175 - arc cos §>A +_J]:'§EZ An[vn+1(§) _ vn-l(s)j[

n+1 n -1

(A33)

It is also convenient to set £ = =1 in equation (A32), giving
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Using this to eliminste C in equation (A32) and then substituting -g
for & gives '

S(=¢) = 8(-1) = ﬁ;(%JE:EE - are cos %)Al +

1 “E’?Z (_l)nAn[vTi(s) ; vn-l(g)] (A34)
n=2

1l n-1

by virtue of equation (A40). Equation (A33) is used as a check for posi-
tive values of ¢ and (A34) for negative values. They cen be written
more brilefly as

S(£E) = S(x1) + ZZ (#1)%n(8)8, O<E<1 (A35)

n=x

where

Ci(g) = %(ﬁﬂ-—? - arc cos §>

(436)

n+ 1 n -1

Cale) = _J’i@ [Vn+1(§) . Vn-l(ﬁ):l’ n=2,3,k, . .

and in (A35) elther the upper or lower sign is to be used throughout. It
should be emphasized that equations (A35) and (A36) constitute a check
regardless of the choice of any particular method of computing the Fourier
coefficients, Ayp. : —

Construction and Checking of Tables

The usefulness of the present theory lies In the fact that it makes
pessible the construction of numerical tables of the integration coeffi-
clents, pny, equations (A25) and (A29), and of the check coefficients,
Cn(E), equation (A36). Once such tables have been prepared, the calcula-
tion of the Fourier coefficilents, Ap, from equation (A22) end the checking
by meens of equation (A35) is a straightforward, systematic, arithmetilcal
procedure, whether or not automatic computing machinery is available. Such
tables of coefficients have been computed (and are available on punched
date cards upon request) for integral velues of n from 1 to 98, and for
£ in the range of O to 1 at an interval of 0.01L. All these calculations
were performed on an IBM type 605 Electronic Calculating Punch. Fixed-
decimal, 13-diglt srithmetic was used, and the final values of the

«SENE IR
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coefficients pp,. and Cn(g) were rounded off to 10 digits to be in a form
sultable for use in magnetic~drum calculators. The sequence of calcula=
tions was as follows (see next section for proofs):

a. To(g) =1, Ta(E) = &
b. Tp.(E) = 26T (&) -~ Tpo,(E), n
c. Vo(g) =0, Va(g) =1
d. Vpya(8) = 28Vp(E) - Vpaa(8), n = 1,2,3,...,99

e. Cpn(t) was then computed using equation (A36) with =n = 1,2,3,...,98,
¢ = 0.00, 0.01, 0.02,...,0.99, 1.00

|

1,2,3,...,99

f£. Tnp(g) - Tp(t - 0.01) was computed for n = 0,1,2,...,99, & = 0.01,.
0.02,...,1.00

g ppp(n =2,3,...,98, r = 0,1,...,100) was computed for the linear case
from equations (A25).

h. W(n,k) was computed for n = 1,2,...,99, k = 0,1,...,49 from equa=-

tion (A28)

i. a(2,3,k) was computed for j = 0,1,2, k = 0,1,2,...,49 from equa~-
tion (A27)

j. por(n =2,3,...,98; r = 0,1,...,100) was computed for the quadratic
case from equation (A29$

As a preliminary check, the tables of Th(E) and Vh(g) were checked
using equations (AL3):

Tpie(E) = ETL(E) - (1 ~ E3)Vu(E)
Voea(E) = EVR(E) + Tp(8)

The tables of pp,. were checked as follows: For the linear case, the
integration formula (A22) should be examct if S(&) is linear. That is,
equations {A20) and (A22) should give the same results for the Fourler
coefficients, Ap, whenever $S(g) is linear. This check was applied for
various linesr functions S(g). For the quadratic case, equations (A20)
and (A22) should gilve the same result for the Fourier coefficients, Ap,
whenever S(&) is linear or quadratic. This check was applied for various
linear and quadratic functions S(E).

n=0,1, . . .,98

The tables of check coefficlents, Cn(t), were checked by constructe
ing analytic functions S(&) having only a Pfinite number of nonvanishing

AR YPIRNT >
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Fourier coefficlents, Ap, all of which were calculated analytlcally and
then substituted in the check equation (A35).

The purpose of these checks 1s to ensure that all the tables are
free of mmerical errors. There gtill remains the question of two other
gsources of error: +the approximation of S(§) by a polynomial, and the
use of only a finite number of terms Ap. These two effects are dlscussed
in the main body of the present report, particularly in connection with
the Sears-Haack body. In generasl, such questions can only be examined
emplrically. If the check procedure indicates the presence of exrrors,
three things can be done. More coefficlents Ap can be taken, a finer
intervael A can be used, or higher degree polynomial approximation can
be used. Any of these courses of &ctlon requires extending the basic
tables. In many practical cases the data function S(t) is originally
obtalned by failring a curve through a reasonable number of points. Obvili-
ously, the use of & finer reading interval A 1is incapable of yilelding
greater accuracy in such casgses. Use of higher degree polynomials is scme=-
times justified, but this also can give illusory improvements. For
example, & curve with shsrp changes in slope is better approximated by
short straight-line segments than by longer arcs of higher degreé poly-
nomials. Fipally, the use of more terms in the Fourier series can be
reduced to an absurdlity once the wave lengths involved become shorter than
the reading interval A.

Theory and Propertlies of Tchebichef Polynomials

The Tchebichef polynomisls are defined in reference 6 as

Tn(E)

Un(g)

where £ = cos @. Since TUn-1(§) is closely related to the Fourier coef-
ficient, An, 1t seems convenient to Introduce the notation '

v, = Upe = 8in np (A38

n(t) = Una(8) = S0 (438)
Since the principal properties of these polynomials, including the fact
that they are polynomials in §, are treated extenslvely in reference 6,
the present section will list and prove only those that have been used
in this report.

cos ngY

(A37)

[sin(n + 1)9]/sin @

First, the following are obvious from the definitions:

To(E) =1, Ti(E) =&, Vo(t) =0, Vi(g) =1 (A39)

~SONTTE
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Next consider the effect of replacing £ by =-£, so that ¢ is replaced
by = - ¢, that is, cos(w ~ @) = -cos @:

Tn(-g) = cos n(x ~ @)

COB NX cO8 nQ

sin n(x ~ @) _ ~cos nx sin np

Va(-£) sin(x - @) -cos % sin @

Thus

To(=8) = (-1)°Tn(8),  Vu(=8) = (-1)""vy(¢) (ako)

for all integral values of n.

Next, setting ¢ =1 gives ¢ = 0, Tp
minate form

1, while Vy is the indeter-

lim 8in ng
9 =>o0 09

Applying L'Hospital'!s rule gives

Tp(l) =1, V(1) =n (Als1)

Recurrence relations can be obtained directly from the definitions
using the trigonometric addition formulas

sin(a + b) = sin a cos b % cos a sin b

cos & cos b £ sin a sin b

cos(a I b)

By use of these, the following are easily proved:

Prar(E) = 26TH(E) = Tpoq(E)
(ak2)
vn+1(§) = 2§Vn( E,) - Vn-l(g)
and
Tn+s(E) = ETR(E) - (L - EB)VL(E)
(AL3)
Vn+1(€) = EVn(E) + Tu(e)

Numerous differential and integral identities are obtainable, analogous
to the trigonometrical formulas
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For exemple, differentiating the definltion of £ gives

% = -gin @ = =v/1-£2

Thus, differentiating Tn(t), equation (A37), gives

dTp _ 4Tn/d9 _ -n sin ng
ag ag/dep ~sin ©

that is

iT_g-g_gl - av,(8) (Alh)

Next consilder

N AN ey Vnea(E) Vo-2(8)T| _ 4 l':sin(n+l)cp_sin(n-l)cp
d_§§l—§2[n+l-_n-l} TdE |2 n+1 n-1

I

% [}:os(g +1)p = cos(n - 1)@:] %

=sin np gin @ _
e = Vpein ¢

that is

A s ol A I RRAC e (als)

Finslly, to evaluate integrals of the type (see above)
I(3,n) = f SAOLE (446)

consider first the case J = 0. This can be integrated immediately by
virtue of equation (Alk) to give

1(0,n) = £ Tn(t) (Ak7)
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Next, 1f Jj > 1, use the recurrence relation (Al2) to write

1(4,n) = f e ev,at = £ f gj'l[vml(g) + vn.l(g)}dg

that is
1(3,m) =3 I:I(j -1,m-1) +I(§ -1, + 1):| (ak8)

Thus, from equation (A4T), I(O,n) can be evaluated for n =1,2, . . . .
Then from equation (A4B), I(j ,n) can be obtained by recurrence s using
the one additionsl equation

I(3,0) =0 (Ak9)
since V(&) = 0.
By means of these equations the integrals I(j,n) can be evaluated
systematically, either analytically or numerically. The general inbegra-

tion procedure presented above can then be applied to extend the Tchebichef
Integration coefficients to any desired degree of polynomial approximation.
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TABLE I.~ HARMONIC SOLUTION FOR A FINENESS RATIO 12.5
SEARS~HAACK BODY BY TCHEBICHEF POLYNOMIALS

Linear Linear Quadratic
approximationt | approximetionl | approximationl
N N
n=1 n=1

1 0.00000 0.000 0.000
2 -10.16125 206.502 206.504
3 .00000 206.502 206.504
4 .00091 206.502 206.50k
5 .00000 206.502 206.504
6 - .00091 206.502 206.50L
7 .00000 206.502 206.50l
8 -.00821 206.502 206.504
9 .00000 206.502 206.504
10 -.01982 206.506 206.505
1L .00000 206.506 206.505
12 -.02552 206.51L 206.506
13 .00000 206.514 206.506
14 -.02876 206.525 206.506
15 .00000 206.525 206.506
16 -.02313 206.534 206.507
17 .00000 206.534 206.507
18 -.02113 206.542 206.508
19 .00000 206.542 206.508
20 -.0hr2k 206.576 206.511
21 .00000 206.576 206.511L
22 -.03279 206.599 206.524
23 .00000 206.599 206.524
24 -.0T7h2L 206.731 206.548
25 .00000 206.731 206.548

IMethods used in approximating S(&), see the appendix.
The theoretical solutlon for this body is:

[2°]

}: nAnZ = 24,2 = 206.521 sq in.

n=1i
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TABLE II.- TCHEBICHEF SOLUTION FOR AN AREA CURVE
WITH A DISCONTINUITY OF SLOPE

4 o
45
S(§)
o) I B
- l . o O 8 l . 0
L =0.8 a) "
n Ao =-—= [Tn]_l B Ap(machine compute
1 -0.254648 -0.254648
o L4037 407438
3 -.410832 -.410837
ly .293354 .293359
5 ~.136980 -.136983
6 .026293 .026296
T - .001958 - .00L961L
8 .045998 .0k5999
9 ~.104130 -.10k131
10 126592 126594
11 - .099202 -.099202
12 0460 TL .OL60TL
13 - .006268 - .006269
1h .0038Tk 00387k
15 -.032859 -.032858
16 .065408 .065407
17 -.074838 -.074839
18 054970 .054970
19 -.022337 -.022337
20 .001h56 .001156
21 - .005707 -.005707
22 .028363 .028362
23 -.049488 - .049490
2k 052133 052133
25 -.034900 -.034900

iMachine computation, linear approximation of
S(&), see the appendix.
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TABLE ITI.- COMPARISON OF TCHEBICHEF SOLUTIONS WITH VALUES COMPUTED BY
THE METHOD OF REFERENCE 1 FOR A BASIC SWEPT-WING MODEL (REF. 3)

Area Curve
M=1.5, 6=90°, ¥=0° M=1.5, g=22.5°, ¥=46.0°
Tchebichef | Method of ref. 1} Tchebichef | Method of ref. 1
N N N N~
Y|yt | Y| )
n=1 - n=1 . n=1i n=1
1 0 0" 0 0
2 282 277 278 272
3 283 277 278 272
L 315 315 284 284
5 316 317 290 289
6 kos 390 291 290
T b1k 396 322 320
8 521 513 326 326
9 529 52k 3hk 349
10 628 610 385 393
11 643 624 386 393
12 686 676 483 480
13 703 692 493 k96
1h 722 T08 533 552
15 729 LT 588 602
16 729 L7 598 605
17 732 721 649 663
18 736 e 660. 676
19 137 25 680 695
20 749 736 712 726
21 750 736 713 729
22 57 Thk 736 5k
23 759 Thlb 759 781
2k 763 T48 759 781
25 76k 783
No discontinuity of slope. Distontinuity of slope.
Difference ~ 2 percent Difference ~ 3 percent

See figure 4 for plots of Tchebichef check solutilons.
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TABLE IV.- FUSELAGE ORDINATES OF BASIC BODY - MODEL 3 -

Fuselage station, | Radlus,
in. in,
0 0.28
5.00 1.46
10.00 2.41
20,00 3.90
30.00 5.07
40,00 6.01
50.00 6.78
60.00 T7.40
70.00 7.86
80.00 8.20
90.00 8.h1
102.00 8.50
110.00 8.k6
120.00 8.30
130.00 T.99
140.00 T.67
150,00 T7.36
160.00 T7.10
170.00 6.70
180.00 6.27
190.00 5.TT
200.00 5.25
210.00 4,50
219.00 2.32
225.38 o .

35
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TABLE V.- FUSELAGE ORDINATES OF SCOOP BODY -~ MODEL 3

[A1l dimensions glven in inches.]
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See table IV for redii of nose and tall portions of fuselage.

See figure 11 c) for definition of symbols.
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Previous method (ref. 1) S New method

2 (™ . R

Ap = -1?‘] Six)sinngpdd [~ Aq = %.’ S(EIWV,(E)dE
o -l

Tchebichef polynomial

v 1 L Sinnd

= E= 1
b= $=0

Figure 1.~ Definition of the Tchebichef polynomials used to represent the Fourler sine series
defining the slope of the area distribution curves of a model.

Qe LCly WM YOVN

L




P

D\x’ ‘x 2
TR I. J

S'lx) = Apsin2¢

2
six) Co= B2($)
do ® 210

Area distribution
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B __ro¥26.96 _ V o R
1 i - m
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Body shape

Figure 2.~ Minimm=drag body for prescribed volume and length (Sears-Haack body); fineness

ratio 12.5.
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(a) An enlarged portion of the erea curve, with the Tchebichef check solution for K = 25.

Figure 3.- Simplified area curve wilth a discontinuity of slope.
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Derivative of area curve

(O— — —<3) Check points, N =25, S'(E)=%2A,sin n¢
.8 ol

[£] Extension of discontinuities, Gibbs phenomenon, ref. 8
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¢,rodians

(b) Derivative of area curve and check pointg for K = 25,

- . m U DU R |
Figure 3.~ Concluded.
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(a) No discontinuity of slope, M = 1.5, @ = 90°, ¥ = 0°
Figure 4.~ Plot of Tchebichef check solutione for area curves previously anal 3).
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\,\ N\
_52.5° \ .
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72.45
Top view
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Angle-of-attack indicat Center of grovit /4 ine i ,7 T
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/k 474! g}y/ 60}~ 14,00
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Side view

90.25

36,28
Rear view
700 Dium.ﬁﬂ\l Ljo
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Wing
Aspect ratio  3.08
Area (total) 2.976 sq ft
Area (exp) | .940sq ft
Dihedral 00 deq
MAC 1.3l ft
Airfoil section NACA
65HA 003
Horizontal tail
Aspect ratic 400
Ared (ioial) 0.906sq ft
Dihedral -200 deg
MAC 0504 ft
Airfoil section NACA
65A 006
Vertical tall 7
Area {total) 1.37 sqft
Alrfoll section NACA
65A 003

Figure 5.- Triangular-wing interceptor-type airplane model (ref. 9); Model 1.
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Flgure 6.- Triangular-wing airplane (Model 1, fig. 5) minimm-drag coefficients and cross-
sectional area distribution.
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Figure 7.~ Projected-area distribution for the triangular-wing airplene (Model 1} for Mach mmbers
of 1.0, 1.2, and 1.8 with check solutions for N = 25.

TTENE e QELGCY W VOVN

S




w H
o (=]

N
&

Projected areo, S, sqin.

o

Q

?nnnz = 10,7
a=l _

/ “r\ ~ _1-Check solution, N= 25

10

20 30 40 50 60 70 80 90 100
Fuselage station, in.

(b) M=1.2, 8 =90°, ¥ = 0°

FMgure T.- Continued.

Ho

120

Wramesn

PerCCY W VOVN



NACA RM A55J28 [ pimminipa L o ur

<

<

nAZ = 10

25
b3
n=l
25

<

A o

o
./

_+—Chaeck solution, N

<
o]

A
N

_ﬁ \\ _ 2
“ Q

w

/ 8
¢
/ o]

180°, ¥ = 33.6°

1.2, 6
gurr

Fuselage station, in.
F

(c) M

=]
)

=

=]

=) © o o o o
0 < B o =

‘uibs ‘g ‘paip pajoalfosg

- GNP



Projected area, S, sqin.
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Flgure 7.~ Continued.
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Figure 8.~ Swept-wing Interceptor-type airplane gimilar to low-tall version of reference 11;
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WING
Aspect ratio, 3.56
Area (fotail, 376.0Z2 sq fi
Dihedral angle, O dag
MAG.I1.33 ft
Airfoil section, NACA 64A007

HORIZONTAL TAIL
Aspect ratio, 3.56

Aran [tatal) Qa2 N0 ca

Arag {total), 9900 ¢
Dihedral angls, O deg‘

MAGC, 5.8 ft

Airfoil section, NAGA 644007

VERTICALTAIL
Aspect ratio, 1.27
Areaq (excluding dorsal fin),
48,35 sq ft
MAC, 6.6] ft
Airfoil section, NACA 64A007

All dimensions in inches.
All airfoll sections parallel to the

fusslags genter line,
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Figure 9.~ Crossg-sgectional area distributlions of low-tall verslons of a swept-~wing alrplane
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Experiment, low-~tail version, ref. ||
(O] Computed, low-tail version, ref. i
---01 Computed airplane model 2
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Zero-lift drag-rise coefficient, ACp,
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e 10.- Comparison of  coefficien
wave-dreg coefficients (N = 25) for two low-tailed versions of & a swept-wing airpla.ne
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(a) Basic body and tail.

Flgure 11.~ Bcoop~inlet duct model; Model 3.
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(b) Area distribution of the basic body and tail.

Figure 11.~ Continued.
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Sta. C
ot 225358

1000

*‘¥</- - ‘Jp//,

Sta. B8O

Sta, 102 sta. 1) Sta. 134

Duet areas:
All dimenslons are in Inches Entrance; 95.28 in2 (LEE., round |ip, Sta, 80)
Dimensions X,Y,W,and Z are given In table v 84.79 in2 (5ta. 81.5)
Body radii ore given In table V Entrance to throat; 96.82inf (Sta. 102.5)
External wetted area 11850 In# Outlat; 99.55in2 (Sta, 134)

(¢) 8coop inlet end duct.

Figure 11l.~ Concluded.
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Zero-lift drag coefficient, Gy

External zero-lift drag coefficient, AGp,
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SONEINEN Risieh NACA RM A55J28
i e 2 R
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adil A
6:5:_:3_‘ RIATA A A a
/§—Infernol
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Mach number, M
(a) Total and internal drag coefficient.

— Experiment
=~ —— GComputed, N=25

Inadmissible computation
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Scoop model, 7~ =0.6 TR L _/—Tn-‘;-l.Q

Scoop model, m—'n = 0.9I
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Mach number, M
(b) External drag-rise coefficient.

Figure 12.~- Experimental and computed drag coefficients for the 8COOp=~

inlet-duct model; Model 3.
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Figure 13.- Equivalent cross-secticnal ares distribution of the sco
duct~ailr mass-flow ratioc of 1.0.
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(a) Inadmissible check solutiong for N = 10 and N = 25.

Figure 1L4,- An inadmissible area curve wilth infinite slopes. Scoop=inlet duct model for duct

mass~-flow ratio of 0.6; Model 3.
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Figure 14.~ Concluded.
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